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Summary

Many systems are monitored and evaluated for their behavior using time signals. Additional
information about the properties of a time signal can be obtained by representing the time signal
by a series of coefficients, based on an analysis function. One example of a signal transformation
is the transformation from the time domain to the frequency domain. The oldest and probably
best known method for this is the Fourier transform developed in 1807 by Joseph Fourier. An
alternative method with some attractive properties is the wavelet transform, first mentioned by
Alfred Haar in 1909. Since then a lot of research into wavelets and the wavelet transform is
performed.

This report gives an overview of the main wavelet theory. In order to understand the wavelet
transform better, the Fourier transform is explained in more detail. This report should be con-
sidered as an introduction into wavelet theory and its applications. The wavelet applications
mentioned include numerical analysis, signal analysis, control applications and the analysis and
adjustment of audio signals.

The Fourier transform is only able to retrieve the global frequency content of a signal, the
time information is lost. This is overcome by the short time Fourier transform (STFT) which
calculates the Fourier transform of a windowed part of the signal and shifts the window over
the signal. The short time Fourier transform gives the time-frequency content of a signal with a
constant frequency and time resolution due to the fixed window length. This is often not the most
desired resolution. For low frequencies often a good frequency resolution is required over a good
time resolution. For high frequencies, the time resolution is more important. A multi-resolution
analysis becomes possible by using wavelet analysis.

The continuous wavelet transform is calculated analogous to the Fourier transform, by the
convolution between the signal and analysis function. However the trigonometric analysis functions
are replaced by a wavelet function. A wavelet is a short oscillating function which contains both
the analysis function and the window. Time information is obtained by shifting the wavelet over
the signal. The frequencies are changed by contraction and dilatation of the wavelet function. The
continuous wavelet transform retrieves the time-frequency content information with an improved
resolution compared to the STFT.

The discrete wavelet transform (DWT) uses filter banks to perform the wavelet analysis. The
discrete wavelet transform decomposes the signal into wavelet coefficients from which the original
signal can be reconstructed again. The wavelet coefficients represent the signal in various frequency
bands. The coefficients can be processed in several ways, giving the DWT attractive properties
over linear filtering.

i



ii SUMMARY



Samenvatting

Systemen worden vaak beoordeeld op hun gedrag en prestaties door gebruik te maken van tijdsig-
nalen. Extra informatie over de eigenschappen van de tijdsignalen kan verkregen worden door
het tijdsignaal weer te geven met behulp van coëfficiënten, die berekend worden door middel van
vergelijkingssignalen. Een voorbeeld hiervan is de transformatie van een tijdsignaal naar het fre-
quentiedomein. De oudste en meest bekende methode om een signaal te transformeren naar het
frequentiedomein is de Fourier transformatie, ontwikkeld in 1807 door Joseph Fourier. Een relatief
nieuwe methode met aantrekkelijke eigenschappen is de wavelet transformatie die voor het eerst
vermeld werd in 1909 door Alfred Haar. Vanaf die tijd is veel onderzoek uitgevoerd naar zowel de
wavelet functies, als ook de wavelet transformatie zelf.

Om de wavelet transformatie beter te kunnen begrijpen, zal eerst de Fourier transformatie
nader toegelicht worden. Dit rapport kan beschouwd worden als een inleiding in de wavelet
theorie en diens verscheidene toepassingen. Deze toepassingen omvatten de mathematica, signaal
bewerking, regeltechniek en de toepassingen in geluid en muziek.

De Fourier transformatie is alleen in staat om de globale frequentie-inhoud van een signaal weer
te geven. De tijdsinformatie van het signaal gaat hierbij verloren. Dit gebrek wordt opgeheven door
de korte tijd Fourier transformatie (short time Fourier transform), die een Fourier transformatie
maakt van een gefilterd gedeelte van het oorspronkelijke signaal. Het filter schuift hierbij over
het signaal. De korte tijd Fourier transformatie is in staat om zowel de tijd- als de frequentie-
inhoud van een signaal weer te geven. De inhoud van het signaal wordt met een constante tijd-
en frequentieresolutie weergegeven vanwege de vaste filtergrootte. Dit is echter meestal niet de
gewenste resolutie. Lage frequenties vereisen vaak een betere frequentieresolutie dan tijd-resolutie.
Voor hoge frequenties is juist de tijdresolutie belangrijker. De wavelet transformatie maakt een
dergelijke analyse met een niet-constante resolutie mogelijk.

De continue wavelet transformatie wordt berekend op dezelfde wijze als de Fourier transfor-
matie, namelijk door een convolutie van een signaal met een vergelijkingssignaal. De trigonometri-
sche vergelijkingssignalen (sinus and cosinus) van de Fourier transformatie zijn in de wavelet trans-
formatie vervangen door wavelet functies. De exacte vertaling van een wavelet is een kleine golf.
Deze kleine golf bevat zowel de vergelijkende functie als ook het filter. De tijdsinformatie wordt
verkregen door de wavelet over het signaal te schuiven. De frequenties worden veranderd door de
wavelet functie in te krimpen en te verwijden. De continue wavelet transformatie is in staat om
de tijds- en frequentie-inhoud van een signaal met een betere resolutie dan de korte tijd Fourier
transformatie weer te geven.

De discrete wavelet transformatie maakt gebruik van filterbanken om een signaal te analyseren.
Het signaal wordt door de analyse filterbank opgedeeld in wavelet-coëfficiënten. Met behulp van de
wavelet-coëfficiënten kan door middel van een reconstructie filterbank het oorspronkelijke signaal
weer worden verkregen. De wavelet-coëfficiënten geven de inhoud van het signaal weer in verschil-
lende frequentie-gebieden. Voordat het oorspronkelijke signaal wordt gereconstrueerd kunnen de
wavelet-coëfficiënten op verschillende manieren worden aangepast. Dit geeft de discrete wavelet
transformatie enkele aantrekkelijke eigenschappen.
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Chapter 1

Introduction

Most signals are represented in the time domain. More information about the time signals can
be obtained by applying signal analysis, i.e. the time signals are transformed using an analysis
function. The Fourier transform is the most commonly known method to analyze a time signal
for its frequency content. A relatively new analysis method is the wavelet analysis. The wavelet
analysis differs from the Fourier analysis by using short wavelets instead of long waves for the
analysis function. The wavelet analysis has some major advantages over Fourier transform which
makes it an interesting alternative for many applications. The use and fields of application of
wavelet analysis have grown rapidly in the last years.

1.1 Historical overview

In 1807, Joseph Fourier developed a method for representing a signal with a series of coefficients
based on an analysis function. He laid the mathematical basis from which the wavelet theory is
developed. The first to mention wavelets was Alfred Haar in 1909 in his PhD thesis. In the 1930’s,
Paul Levy found the scale-varying Haar basis function superior to Fourier basis functions. The
transformation method of decomposing a signal into wavelet coefficients and reconstructing the
original signal again is derived in 1981 by Jean Morlet and Alex Grossman. In 1986, Stephane
Mallat and Yves Meyer developed a multiresolution analysis using wavelets. They mentioned
the scaling function of wavelets for the first time, it allowed researchers and mathematicians to
construct their own family of wavelets using the derived criteria. Around 1998, Ingrid Daubechies
used the theory of multiresolution wavelet analysis to construct her own family of wavelets. Her
set of wavelet orthonormal basis functions have become the cornerstone of wavelet applications
today. With her work the theoretical treatment of wavelet analysis is as much as covered.

1.2 Objective

The Fourier transform only retrieves the global frequency content of a signal. Therefore, the
Fourier transform is only useful for stationary and pseudo-stationary signals. The Fourier trans-
form does not give satisfactory results for signals that are highly non-stationary, noisy, a-periodic,
etc. These types of signals can be analyzed using local analysis methods. These methods include
the short time Fourier transform and the wavelet analysis. All analysis methods are based on the
principle of computing the correlation between the signal and an analysis function.

Since the wavelet transform is a new technique, the principles and analysis methods are not
widely known. This report presents an overview of the theory and applications of the wavelet
transform. It is invoked by the following problem definition:

Perform a literature study to gain more insight in the wavelet analysis and its properties
and give an overview of the fields of application.
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2 CHAPTER 1. INTRODUCTION

1.3 Approach

The Fourier transform (FT) is probably the most widely used signal analysis method. Understand-
ing the Fourier transform is necessary to understand the wavelet transform. The transition from
the Fourier transform to the wavelet transform is best explained through the short time Fourier
transform (STFT). The STFT calculates the Fourier transform of a windowed part of the signal
and shifts the window over the signal.

Wavelet analysis can be performed in several ways, a continuous wavelet transform, a dis-
cretized continuous wavelet transform and a true discrete wavelet transform. The application of
wavelet analysis becomes more widely spread as the analysis technique becomes more generally
known. The fields of application vary from science, engineering, medicine to finance.

This report gives an introduction into wavelet analysis. The basics of the wavelet theory are
treated, making it easier to understand the available literature. More detailed information about
wavelet analysis can be obtained using the references mentioned in this report. The applications
described are thought to be of most interest to mechanical engineering.

The various analysis methods presented in this report will be compared using the time signal
x(t), shown in Fig. 1.1. From 0.1 s up to 0.3 s the signal consists of a sine with a frequency of
45 Hz, at 0.2 s the signal has a pulse. At 0.4 s the signal shows a sinusoid with a frequency of
250 Hz which changes to 75 Hz at 0.5 s. The time interval from 0.7 s up to 0.9 s consists of two
superposed sinusoids with frequencies of 30 Hz and 110 Hz. The signal is sampled at a frequency
of 1 kHz.

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

x
(t

)

time [s]

Figure 1.1: Signal x(t)

1.4 Outline

This report is organized as follows. The Fourier transform will be shortly addressed in Chapter 2.
The chapter discusses the continuous, discrete, fast and short time Fourier transforms. From
the short time Fourier transform the link to the continuous wavelet transform will be made in
Chapter 3. The wavelet functions and the continuous wavelet analysis method will be explained
together with a discretized version of the continuous wavelet transform. The true discrete wavelet
transform uses filter banks for the analysis and reconstruction of the time signal. Filter banks
and the discrete wavelet transform are the subject of Chapter 4. Wavelet analysis can be applied
for many different purposes. It is not possible to mention all different applications, the most
important application fields will be presented in Chapter 5. Finally conclusions will be drawn in
Chapter 6.



Chapter 2

Fourier analysis

The Fourier transform (FT) is probably the most widely used signal analysis method. In 1807, a
French mathematician Joseph Fourier discovered that a periodic function can be represented by
an infinite sum of complex exponentials. Many years later his idea was extended to non-periodic
functions and then to discrete time signals. In 1965 the FT became even more popular by the
development of the Fast Fourier transform (FFT).

The Fourier transform retrieves the global information of the frequency content of a signal
and will be discussed in Section 2.1. A computationally more effective method is the fast Fourier
transform (FFT) which is the subject of Section 2.2. For stationary and pseudo-stationary signals
the Fourier transform gives a good description. However, for highly non-stationary signals some
limitations occur. These limitations are overcome by the short time Fourier transform (STFT),
presented in Section 2.3. The STFT is a time-frequency analysis method which is able to reveil
the local frequency information of a signal.

2.1 Fourier transform

The Fourier transform decomposes a signal into orthogonal trigonometric basis functions. The
Fourier transform of a continuous signal x(t) is defined in (2.1). The Fourier transformed signal
XFT (f) gives the global frequency distribution of the time signal x(t) [8, 16]. The original signal
can be reconstructed using the inverse Fourier transform (2.2).

XFT (f) =
∫ ∞

−∞
x(t)e−j2πftdt (2.1)

x(t) =
∫ ∞

−∞
XFT (f)ej2πftdf (2.2)

Using these equations, a signal x(t) can be transformed into the frequency domain and back
again. The Fourier transform and reconstruction are possible if the following Dirichlet conditions
are fulfilled [8, 15]:

• The integral
∫∞
−∞ |x(t)|dt must exist, i.e. the Fourier transform XFT → 0 as |f | → ∞.

• The time signal x(t) and its Fourier transform XFT (f) are single-valued, i.e. no two values
occur at equal time instant t or frequency f .

• The time signal x(t) and its Fourier transform XFT (f) are piece-wise continuous. Piece-wise
continuous functions must have a value at the point of the discontinuity which equals the
mean of the surrounding points. Furthermore of the discontinuity must be of finite size and
the number of discontinuities must not increase without limit in a finite time interval [16].

• A sufficient, but not necessary condition is that the functions x(t) and XFT (f) have upper
and lower bounds. The Dirac δ-function for example disobeys this condition.

3



4 CHAPTER 2. FOURIER ANALYSIS

Many signals, especially periodic signals, do not fulfill the Dirichlet conditions, so the contin-
uous Fourier transform of (2.1) cannot be applied. Most experimentally obtained signals are not
continuous in time, but sampled as discrete time intervals ∆T . Furthermore they are of finite
length with a total measurement time T , divided into N = T/∆T intervals. These kind of signals
can be analyzed in the frequency domain using the discrete Fourier transform (DFT), defined
in (2.3). Due to the sampling of the signal, the frequency spectrum becomes periodic, so the
frequencies that can be analyzed are finite [23]. The DFT is evaluated at discrete frequencies
fn = n/T, n = 0, 1, 2, . . . , N − 1. The inverse DFT reconstructs the original discrete time signal
and is given in (2.4).

XDFT (fn) =
1
N

N−1∑
k=0

x(k)e−j2πk∆T (2.3)

x(k) =
1

∆T

N−1
T∑

fn=0

XDFT (fn)ej2πfnk∆T (2.4)

2.2 Fast Fourier transform

The calculation of the DFT can become very time-consuming for large signals (large N). The fast
Fourier transform (FFT) algorithm does not take an arbitrary number of intervals N , but only
the intervals N = 2m, m ∈ N. The reduction in the number of intervals makes the FFT very fast,
as the name implies. A drawback compared to the ordinary DFT is that the signal must have 2m

samples, this is however in general no problem.
In practice the calculation of the FFT can suffer from two problems. First since only a small

part of the signal x(t) on the interval 0 ≤ t ≤ T is used, leakage can occur. Leakage is caused
by the discontinuities introduced by periodically extending the signal. Leakage causes energy of
fundamental frequencies to leak out to neighboring frequencies. A solution to prevent signal leakage
is by applying a window to the signal which makes the signal more periodic in the time interval.
A disadvantage is that the window itself has a contribution in the frequency spectrum. The
second problem is the limited number of discrete signal values, this can lead to aliasing. Aliasing
causes fundamental frequencies to appear as different frequencies in the frequency spectrum and
is closely related to the sampling rate of the original signal. Aliasing can be prevented if the
sampling theorem of Shannon is fulfilled. The theorem of Shannon states that no information is
lost by the discretization if the sample time ∆T equals or is smaller than ∆T = 2/fmax. For more
detailed information regarding both problems the reader is referred to [8, 16].

The FFT transform of the time signal x(t) of Fig. 1.1 is shown in Fig. 2.1. The figures shows
five major peaks, at 30, 45, 75, 110 and 250 Hz. The noise in between the peaks indicates the
existence of other frequencies in the time signal. These frequencies are present because of the
sudden changes in the time signal and the pulse at 0.4 s. The FFT of Fig. 2.1 shows peaks at
the correct frequencies, however the time structure of the original signal cannot be seen in the
figure. The FFT is not very useful for analyzing non-stationary signals since it does not describe
the frequency content of a signal at specific times.

2.3 Short time Fourier transform

The limitation of the Fourier transform, i.e. it gives only the global frequency content of a signal,
is overcome by the short time Fourier transform (STFT). The STFT is able to retrieve both
frequency and time information from a signal. The STFT calculates the Fourier transform of a
windowed part of the original signal, where the window shifts along the time axis. In other words,
a signal x(t) is windowed by a window g(t) of limited extend, centered at time τ . Of the windowed
signal a FT is taken, giving the frequency content of the signal in the windowed time interval.
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Figure 2.1: Fast Fourier transform

The STFT is defined in (2.5). Here, the ∗ denotes the complex conjugated [23, 22]. It can be
seen that the STFT is nothing more than the FT of the signal x(t) multiplied by a window g(t).

XSTFT (τ, f) =
∫ ∞

−∞
x(t)g∗(t− τ)e−j2πftdt (2.5)

The performance of the STFT analysis depends critically on the chosen window g(t) [22]. A
short window gives a good time resolution, but different frequencies are not identified very well.
This can be seen in Fig. 2.2(a) for a window length of 0.03 s. A long window gives an inferior
time resolution, but a better frequency resolution, as shown in Fig. 2.2(b) for a window length of
0.6 s. It is not possible to get both a good time resolution and a good frequency resolution. This
is known as the Heisenberg inequality [22]. The Heisenberg inequality states that the product of
time resolution ∆t and frequency resolution ∆f (bandwidth-time product) is constant, i.e. the
time-frequency plane is divided into blocks with an equal area. The bandwidth-time product is
lower bounded (minimum block size) as

∆t∆f ≥ 1
4π
. (2.6)

(a) Good time resolution (b) Good frequency resolution

Figure 2.2: STFT for different window lengths

A compromise between the time and frequency resolution is shown in Fig. 2.3 for a window
length of 0.15 s. With this window length the STFT shows both a reasonable time and frequency
resolution. Note that the sharp peak at 0.2 s cannot be distinguished clearly.

The example shows that finding a proper window length is critical for the quality of the STFT.
The STFT uses a fixed window length, so ∆t and ∆f are constant. With a constant ∆t and ∆f
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Figure 2.3: STFT with a good compromise between time and frequency resolution

the time-frequency plane is divided into blocks of equal size as shown in Fig. 2.4. This resolution
is not satisfactory. Low frequency components often last a long period of time, so a high frequency
resolution is required. High frequency components often appear as short bursts, invoking the need
for a higher time resolution.

time

fr
eq

u
en

cy

Figure 2.4: Constant resolution time-frequency plane

The basic differences between the wavelet transform (WT) and the STFT are, first, the window
width can be changed in the WT as a function of the analyzing frequency. Secondly, the analysis
function of the WT can be chosen with more freedom. The wavelet transform is the subject of
the next chapter.



Chapter 3

Wavelet analysis

The analysis of a non-stationary signal using the FT or the STFT does not give satisfactory results.
Better results can be obtained using wavelet analysis. One advantage of wavelet analysis is the
ability to perform local analysis [17]. Wavelet analysis is able to reveal signal aspects that other
analysis techniques miss, such as trends, breakdown points, discontinuities, etc. In comparison to
the STFT, wavelet analysis makes it possible to perform a multiresolution analysis.

The general idea of multiresolution analysis will be discussed in Section 3.1. The wavelet
functions and their properties are the subject of Section 3.2. The continuous wavelet transform
(CWT) will be treated in Section 3.3 together with the discretized version of the CWT.

3.1 Multiresolution analysis

The time-frequency resolution problem is caused by the Heisenberg uncertainty principle and exists
regardless of the used analysis technique. For the STFT, a fixed time-frequency resolution is used.
By using an approach called multiresolution analysis (MRA) it is possible to analyze a signal at
different frequencies with different resolutions. The change in resolution is schematically displayed
in Fig. 3.1.

time

fr
eq

u
en

cy

Figure 3.1: Multiresolution time-frequency plane

For the resolution of Fig. 3.1 it is assumed that low frequencies last for the entire duration of
the signal, whereas high frequencies appear from time to time as short burst. This is often the
case in practical applications.

The wavelet analysis calculates the correlation between the signal under consideration and a
wavelet function ψ(t). The similarity between the signal and the analyzing wavelet function is
computed separately for different time intervals, resulting in a two dimensional representation.
The analyzing wavelet function ψ(t) is also referred to as the mother wavelet.

7



8 CHAPTER 3. WAVELET ANALYSIS

3.2 Wavelets

In comparison to the Fourier transform, the analyzing function of the wavelet transform can be
chosen with more freedom, without the need of using sine-forms. A wavelet function ψ(t) is a
small wave, which must be oscillatory in some way to discriminate between different frequencies
[23]. The wavelet contains both the analyzing shape and the window. Fig. 3.2 shows an example
of a possible wavelet, known as the Morlet wavelet. For the CWT several kind of wavelet functions
are developed which all have specific properties [23].
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Figure 3.2: Morlet wavelet

An analyzing function ψ(t) is classified as a wavelet if the following mathematical criteria are
satisfied [1]:

1. A wavelet must have finite energy

E =
∫ ∞

−∞
|ψ(t)|2dt <∞. (3.1)

The energy E equals the integrated squared magnitude of the analyzing function ψ(t) and
must be less than infinity.

2. If Ψ(f) is the Fourier transform of the wavelet ψ(t), the following condition must hold

Cψ =
∫ ∞

0

|ψ̂(f)|2

f
df <∞. (3.2)

This condition implies that the wavelet has no zero frequency component (Ψ(0) = 0), i.e.
the mean of the wavelet ψ(t) must equal zero. This condition is known as the admissibility
constant. The value of Cψ depends on the chosen wavelet.

3. For complex wavelets the Fourier transform Ψ(f) must be both real and vanish for negative
frequencies.

3.3 Continuous wavelet transform

The continuous wavelet transform is defined as [1, 23, 19]

XWT (τ, s) =
1√
|s|

∫ ∞

−∞
x(t)ψ∗

(
t− τ

s

)
dt. (3.3)

The transformed signal XWT (τ, s) is a function of the translation parameter τ and the scale
parameter s. The mother wavelet is denoted by ψ, the ∗ indicates that the complex conjugate is
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used in case of a complex wavelet. The signal energy is normalized at every scale by dividing the
wavelet coefficients by 1/

√
|s| [1]. This ensures that the wavelets have the same energy at every

scale.
The mother wavelet is contracted and dilated by changing the scale parameter s. The variation

in scale s changes not only the central frequency fc of the wavelet, but also the window length.
Therefore the scale s is used instead of the frequency for representing the results of the wavelet
analysis. The translation parameter τ specifies the location of the wavelet in time, by changing τ
the wavelet can be shifted over the signal. For constant scale s and varying translation τ the rows
of the time-scale plane are filled, varying the scale s and keeping the translation τ constant fills
the columns of the time-scale plane. The elements in XWT (τ, s) are called wavelet coefficients,
each wavelet coefficient is associated to a scale (frequency) and a point in the time domain.

The WT also has an inverse transformation, as was the case for the FT and the STFT. The
inverse continuous wavelet transformation (ICWT) is defined by

x(t) =
1
C2
ψ

∫ ∞

−∞

∫ ∞

−∞
XWT (τ, s)

1
s2
ψ

(
t− τ

s

)
dτds. (3.4)

Note that the admissibility constant Cψ must satisfy the second wavelet condition.
A wavelet function has its own central frequency fc at each scale, the scale s is inversely pro-

portional to that frequency. A large scale corresponds to a low frequency, giving global information
of the signal. Small scales correspond to high frequencies, providing detail signal information.

For the WT, the Heisenberg inequality still holds, the bandwidth-time product ∆t∆f is con-
stant and lower bounded. Decreasing the scale s, i.e. a shorter window, will increase the time
resolution ∆t, resulting in a decreasing frequency resolution ∆f . This implies that the frequency
resolution ∆f is proportional to the frequency f , i.e. wavelet analysis has a constant relative
frequency resolution [23]. The Morlet wavelet, shown in Fig. 3.2, is obtained using a Gaussian
window, where fc is the center frequency and fb is the bandwidth parameter

ψ(t) = g(t)e−j2πfct, g(t) =
√
πfbe

t2/fb . (3.5)

The center frequency fc and the bandwidth parameter fb of the wavelet are the tuning parameters.
For the Morlet wavelet, scale and frequency are coupled as

f =
fc
s
. (3.6)

The calculation of the continuous wavelet transform is usually performed by taking discrete
values for the scaling parameter s and translation parameter τ . The resulting wavelet coefficients
are called wavelet series. For analysis purposes only, the discretization can be done arbitrarily,
however if reconstruction is required, the wavelet restrictions mentioned in Section 3.2 become
important.

The constant relative frequency resolution of the wavelet analysis is also known as the constant
Q property. Q is the quality factor of the filter, defined as the center-frequency fc divided by the
bandwidth fb [23]. For a constant Q analysis (constant relative frequency resolution), a dyadic
sample-grid for the scaling seems suitable. A dyadic grid is also found in the human hearing and
music. A dyadic grid discretizes the scale parameter on a logarithmic scale. The time parameter
is discretized with respect to the scale parameter. The dyadic grid is one of the most simple
and efficient discretization methods for practical purposes and leads to the construction of an
orthonormal wavelet basis [1]. Wavelet series can be calculated as

XWTm,n
=

∫ ∞

−∞
x(t)ψm,n(t)dt, with ψm,n = s

−m/2
0 ψ(s−m0 t− nτ0). (3.7)

The integers m and n control the wavelet dilatation and translation. For a dyadic grid, s0 = 0
and τ0 = 1. Discrete dyadic grid wavelets are chosen to be orthonormal, i.e. they are orthogonal
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to each other and normalized to have unit energy [1]. This choice allows the reconstruction of the
original signal by

x(t) =
∞∑

m=−∞

∞∑
n=−∞

XWTm,nψm,n(t). (3.8)

The discretized CWT of the signal of Fig. 1.1, analyzed with the Morlet wavelet, is shown in
Fig. 3.3. Both a surface and a contour plot of the wavelet coefficients are shown. In literature,
most of the time the contour plot is used for representing the results of a CWT.

Note that in both figures large scales correspond to low frequencies and small scales to high
frequencies. The CWT of Fig. 3.3 gives a good frequency resolution for high frequencies (small
scales) and a good time resolution for low frequencies (large scales). The different frequencies are
detected at the correct time instants, the sharp peak at 0.2 s is detected well as can be seen by
the existence of the peak at small scales at 0.2 s.

(a) Surface plot
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Figure 3.3: Continuous wavelet transform

The true discrete wavelet transform makes use of filter banks for the analysis and synthesis of
the signal and will be discussed in the next chapter.



Chapter 4

Discrete wavelet transform

The CWT performs a multiresolution analysis by contraction and dilatation of the wavelet func-
tions. The discrete wavelet transform (DWT) uses filter banks for the construction of the mul-
tiresolution time-frequency plane. Filter banks will be introduced in Section 4.1. The DWT uses
multiresolution filter banks and special wavelet filters for the analysis and reconstruction of signals.
The DWT will be discussed in Section 4.2.

4.1 Filter banks

A filter bank consists of filters which separate a signal into frequency bands [26]. An example of a
two channel filter bank is shown in Fig. 4.1. A discrete time signal x(k) enters the analysis bank
and is filtered by the filters L(z) and H(z) which separate the frequency content of the input signal
in frequency bands of equal width. The filters L(z) and H(z) are therefore respectively a low-pass
and a high-pass filter. The output of the filters each contain half the frequency content, but an
equal amount of samples as the input signal. The two outputs together contain the same frequency
content as the input signal, however the amount of data is doubled. Therefore downsampling by
a factor two, denoted by ↓ 2, is applied to the outputs of the filters in the analysis bank.

Reconstruction of the original signal is possible using the synthesis filter bank [26, 23]. In the
synthesis bank the signals are upsampled (↑ 2) and passed through the filters L′(z) and H ′(z).
The filters in the synthesis bank are based on the filters in the analysis bank. The outputs of the
filters in the synthesis bank are summed, leading to the reconstructed signal y(k).

The different output signals of the analysis filter bank are called subbands, the filter-bank
technique is also called subband coding [23].

Figure 4.1: Two channel filter bank

4.1.1 Down- and upsampling

The low- and high-pass filters L(z) and H(z) split the frequency content of the signal in half. It
therefore seems logical to perform a downsampling with a factor two to avoid redundancy. If half

11
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of the samples of the filtered signals cl(k) and ch(k) are reduced, it is still possible to reconstruct
the signal x(k) [26]. The downsampling operation (↓ 2) saves only the even-numbered components
of the filter output, hence it is not invertible. In the frequency domain, the effect of discarding
information is called aliasing. If the Shannon sampling theorem is met, no loss of information
occurs [8, 26]. The sampling theorem of Shannon states that downsampling a sampled signal
by a factor M produces a signal whose spectrum can be calculated by partitioning the original
spectrum into M equal bands and summing these bands [23].

In the synthesis bank the signals are first upsampled before filtering. The upsampling by a
factor two (↑ 2) is performed by adding zeros in between the samples of the original signal. Note
that first downsampling a signal and than upsampling it again will not return the original signal

x =



·
x(0)
x(1)
x(2)
x(3)
x(4)
·


(↓ 2)x =


·

x(0)
x(2)
x(4)
·

 (↑ 2)(↓ 2)x =



·
x(0)

0
x(2)

0
x(4)
·


. (4.1)

The transpose of (↓ 2) is (↑ 2). Since transposes come in reverse order, synthesis can be preformed
as the transpose of the analysis. Furthermore (↓ 2)(↑ 2) = I, since (↑ 2) is the right-inverse
of (↓ 2) [26]. This indicates that it is possible to obtain the original signal again with up- and
downsampling. By first inserting zeros and then removing them, the original signal is obtained
again.

4.1.2 Perfect reconstruction

For perfect reconstruction to be possible, the filter bank should be biorthogonal. Furthermore
some design criteria for both the analysis and synthesis filters should be met to prevent aliasing
and distortion and to guarantee a perfect reconstruction [26].

In the two channel filter bank of Fig. 4.1, the filters L(z) and H(z) split the signal into two
frequency bands, i.e. the filters are respectively a low-pass and a high-pass filter. If the filters
were perfect brick-wall filters, the downsampling would not lead to loss of information. However
ideal filters cannot be realized in practice, so a transition band exists. Besides aliasing, this leads
to an amplitude and phase distortion in each of the channels of the filter band [23].

For the two channel filter bank of Fig. 4.1, aliasing can be prevented by designing the filters
of the synthesis filter bank as [26]

L′(z) = H(−z) (4.2)
H ′(z) = −L(−z). (4.3)

To eliminate distortion, a product filter P0(z) = L′(z)L(z) is defined. Distortion can be avoided if

P0(z)− P0(−z) = 2z−N , (4.4)

where N is the overall delay in the filter bank. Generally an N th order filter produces a delay of
N samples [23]. The perfect reconstruction filter bank can be designed in two steps [26]:

1. Design a low-pass filter P0 satisfying (4.4).

2. Factor P0 into L′(z)L(z) and use (4.2) and (4.3) to calculate H(z) and H ′(z).

The design of the product filter P0 of the first step and the factorization of the second step can
be done in several ways. More information about the wavelet filter design can be found in [26].
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4.2 Multiresolution filter banks

The CWT of Chapter 3 performs a multiresolution analysis which makes it possible to analyze a
signal at different frequencies with different resolutions. For high frequencies (low scales), which
last a short period of time, a good time resolution is desired. For low frequencies (high scales) a
good frequency resolution is more important. The CWT has a time-frequency resolution as shown
in Fig. 3.1. This multiresolution can also be obtained using filter banks, resulting in the discrete
wavelet transform (DWT). Note that the discretized version of the CWT is not equal to the DWT,
the DWT uses filter banks, whereas the discretized CWT uses discretized versions of the scale and
dilatation axes.

The low-pass and high-pass filtering branches of the filter bank retrieve respectively the ap-
proximations and details of the signal x(k). In Fig. 4.2, a three level filter bank is shown. The filter
bank can be expanded to an arbitrary level, depending on the desired resolution. The coefficients
cl(k) (see Fig. 4.2(a)) represent the lowest half of the frequencies in x(k), downsampling doubles
the frequency resolution. The time resolution is halved, i.e. only half the number of samples are
present in cl(k).

In the second level, the outputs of L(z) and H(z) double the time resolution and decrease the
frequency content, i.e. the width of the window is increased. After each level, the output of the
high-pass filter represents the highest half of the frequency content of the low-pass filter of the
previous level, this leads to a pass-band. The time-frequency resolution of the analysis bank of
Fig. 4.2(a) is similar to the resolution shown in Fig. 3.1. For a special set of filters L(z) and H(z)
this structure is called the DWT, the filters are called wavelet filters.

L(z)

H(z) $2

$2

L(z)

H(z) $2

$2

L(z)

H(z) $2

$2

x(k)

c  (k)h

c   (k)lh

c    (k)llh

c   (k)lll

c  (k)l

(a) analysis bank

(b) synthesis bank

Figure 4.2: three level filter bank

4.2.1 Wavelet filters

The relationship between the CWT and the DWT is not very obvious. The wavelets in the CWT
have a center frequency and act as a band-pass filter in the convolution of the wavelet function
with the signal x(t). The sequence of low-pass filter, downsampling and high-pass filter also acts
as a band-pass filter.
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In order to facilitate the comparison between the DWT and CWT, the filter bank of Fig. 4.2 is
rewritten to Fig. 4.3 [23]. An increase in downsampling rate leads to a larger time grid for lower
frequencies (higher scales). The filters can be interpreted as the wavelet functions at different
scales. However they are not exact scaled versions of each other, if the number of levels is increased
and the impulse responses of the equivalent filters converge to a stable waveform, the filters L(z)
and H(z) are wavelet filters [23, 6]. The subsequent filters then become scaled versions of each
other. The wavelet filters represent the frequency content of a wavelet function at a specific scale.
The wavelet filters can be classified into two classes, orthogonal and biorthogonal wavelets. Several
wavelet families, designed for the DWT, are discussed with their properties in Appendix A.

Figure 4.3: equivalent of Fig. 4.2

The limit wavelet functions, i.e. the stable waveforms, can be constructed the easiest from the
synthesis bank. For the lower branch of Fig. 4.2(b), consisting of only low-pass filters and upsam-
pling, the impulse response converges to a final function l(n) for which the following difference
equation holds [1, 23]

φ(t) =
N∑
n=0

l(n)φ(2t− n). (4.5)

This function is known as the scaling function of the wavelet. For the band-pass sequences the
impulse responses converge holding the final difference equation which can be calculated as

ψ(t) =
N∑
n=0

h(n)ψ(2t− n). (4.6)

The final equation of the band-pass sequences h(n) is the wavelet function ψ(t).
The subband with wavelet coefficients clll is called the approximation subband cA and contains

the lowest frequencies. The other subbands are called detail subbands cD and give the detail
information of the signal. The wavelet coefficients represent the signal content in the various
frequency bands.

For a p-level decomposition, the highest frequency observed in the approximation wavelet
coefficients clll can be calculated as a function of the sample frequency fs as

fl =
fs

2p+1
. (4.7)

The frequency content of the approximation frequency band cA and detail frequency bands cD
can be calculated as

fcA = [0, 2−p−1fs] (4.8)

fcDp
= [2−p−1fs, 2−pfs]. (4.9)
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The success of a certain decomposition depends strongly on the chosen wavelet filters, depending
on the signal properties [23]. This is not the case with the STFT. Furthermore it is not possible
to determine a mean value of a signal using the WT.

The DWT of the signal of Fig. 1.1 with a three level filter bank and a ‘db4’ wavelet function
(see Appendix A) is shown in Fig. 4.4. There exists a trade-off between the order of the wavelets
and the computation time. Higher order wavelets are smoother and are better able to distinguish
between the various frequencies, but require more computation time. The DWT of Fig. 4.4 shows
the original signal in the top figure. The other figures contain the wavelet coefficients of the various
subbands. The frequencies ranges [flow, fhigh] of the various subbands are given in Table 4.1.

subband flow Hz fhigh Hz
clll 0 62.5
cllh 62.5 125
clh 125 250
ch 250 500

Table 4.1: Frequency content subbands DWT
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Figure 4.4: Discrete wavelet transform

From Fig. 4.4, one can see that the frequency content of the signal x(t) is decomposed to the
correct frequency bands. The discontinuities at the start and beginning of the various parts are
visible in all frequency bands. The sine with a frequency of 250 Hz is visible in both clh and ch
since this frequency is located exactly at the edge of both bands. Signal components with specific
frequencies appear also in surrounding subbands, however with lower amplitudes. This is because
the low-pass and high-pass filters are not perfect brick-wall filters. The order of the used wavelet
also has an effect on this, a higher order wavelet will produce less undesired frequency content in
the surrounding subbands. The peak at 0.2 s appears in the subbands with the highest frequencies.
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The wavelet coefficients in the different frequency bands of the DWT can be processed in
several ways. By adjusting the wavelet coefficients the reconstructed signal of the synthesis filter
bank can be changed in comparison to the original signal. This gives the DWT some attractive
properties over linear filtering. Compared to the CWT, the DWT is easier to compute and the
wavelet coefficients are easier to interpret since no conversion from scale to frequency has to be
made.



Chapter 5

Applications

Wavelet analysis can be applied for many different purposes. The areas of application differ from
science to medicine and finance. It is not possible to mention all different application fields. In
this chapter applications are presented which have some analogy with mechanical engineering and
in particular dynamics and control, in which scope this report is written. The wavelet applications
found in literature will be shortly summarized in this chapter, more detailed information of the
various applications can be found in the corresponding references. The application fields include
numerical analysis (Section 5.1), signal analysis (Section 5.2), control applications (Section 5.3)
and audio applications (Section 5.4).

5.1 Numerical analysis

Wavelet analysis is a powerful tool for numerical analysis and can be very computational efficient.
This section deals with the use of wavelets for solving two kind of differential equations, ordinary
differential equations (ODEs) and partial differential equations (PDEs).

Another useful numerical application for wavelets is the compression of one or two dimensional
data, these subjects will be further addressed in respectively Section 5.2.1 and Section 5.2.2.

5.1.1 Ordinary differential equations

The solution of ordinary differential equations using wavelets is presented in [29]. The ODEs
considered are of the form

Lu(x) = f(x) for x ∈ [0, 1], where L =
m∑

j=0

aj(x)Dj, (5.1)

with boundary conditions

(B0u)(0) = g0 and (B1u)(1) = g1, (5.2)

where

Bi =
m∑
j=0

bi,jD
j . (5.3)

For ODE’s with coefficients aj(x) independent of x, the solution of the ODE can be found with
use of the Fourier transform [29]. Wavelet transformation is a possible substitute for the Fourier
transform and thus a possible tool for finding the solution of ODEs.

The solution is found by first calculating the Fourier transform of the right-hand side of the
ODE, then dividing the coefficients of each basis function by the corresponding eigenvalue and
finally taking the inverse Fourier transform.

17
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The solution of ODEs can also be found using the DWT with compactly supported wavelet
filters. The wavelet analysis replaces the Fourier transform. The resulting algorithm is faster
than the algorithm which uses the Fourier transform because of the subsampling in the wavelet
transform, especially in the coarser levels.

5.1.2 Partial differential equations

Partial differential equations (PDEs) can be used to describe physical phenomena. They are
often difficult to solve analytically, hence numerical methods have to be used. Partial differential
equations that encounter either singularities or steep changes require non-uniform time-spatial
grids or moving elements. Wavelet analysis is an efficient method for solving these PDEs [5]. The
wavelet transform can track the position of a moving steep front and increase the local resolution
of the grid by adding higher resolution wavelets. In the smoother regions, a lower resolution can
be used.

The resolution grid is adapted dynamically in [5] using an adaptive wavelet collocation method.
The minimum and maximum wavelet resolutions are determined in advance. Grid points are
removed or added according to the magnitude of the corresponding wavelet coefficient. If the
wavelet coefficient is located below a predefined threshold ε, the grid point can be removed.
Transient changes in the solution are accounted for by adding extra grid points at the same and
at lower levels. The adaptation procedure can be described as:

• Compute the interpolation for each odd grid point from the lower level of the grid [5].

• Compute the corresponding wavelet coefficient djk and apply the grid reduction/extension
according to

– if djk < ε, remove the grid point.

– if djk ≥ ε, maintain the grid point.

The number of allocation points is optimized without affecting the accuracy of the solution [5].

5.2 Signal analysis

Signals are always the input for a wavelet analysis. The resulting wavelet coefficients can be
manipulated in many ways to achieve certain results, these include denoising, compression, feature
detection, etc. This section discusses various applications of wavelets in signal analysis.

5.2.1 Audio compression

The DWT is a very useful analysis tool for signal compression. The filter banks of the DWT are
not regular, but close to regular in the first few octaves of the subband decomposition [22].

Effective speech and audio compression algorithms use knowledge of the human hearing. Hu-
man hearing is associated with critical bands. Around a frequency fm there is masking. A
neighboring frequency with magnitude below T (fm, f) is masked by fm and is not audible [26].
The magnitude T (fm, f) can be calculated as

T (fm, f) =

 M(fm)
(
f
fm

)28

, f ≤ fm

M(fm)
(
f
fm

)−10

, f > fm,
(5.4)

where M(fm) is the masking threshold, independent of the signal. For the audio compression
the frequency allocation of the DWT approximates the critical bands of the human ear. The
frequencies fm with large power are detected and the masking envelopes T (fm, f) are computed.
From this the masking curve is constructed which is used to determinate which wavelet coefficients
are kept and which are removed in order to compress the signal.
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Speech compression can be used e.g. in mobile communications to reduce the transmission
time. Speech signals can be divided into voiced and unvoiced sounds. Voiced sound have mainly
low-frequency content, whereas unvoiced sounds (e.g. a hiss) have energy in all frequency bands.
The human hearing is associated to nonuniform critical bands, which can be approximated using
a four-level dyadic filter bank [26].

5.2.2 Image and video compression

Images are analyzed and synthesized by 2D filter banks. In images and videos the low frequencies,
extracted by high scale wavelet functions, represent flat backgrounds. The high frequencies (low
scale wavelet functions) represent regions with texture [26]. The compression is performed using a
p-level filter bank. The low-pass subband gives an approximation of the original image, the other
bands contain detail information. Bit allocation is now crucial, subimages with low energy levels
should have fewer bits [26]. Some important properties of the filter bank used for image and video
compression are:

• The synthesis scaling function should be smooth and symmetric.

• The high-pass analysis filter should have no DC leakage. The low-pass subband should
contain all the DC energy.

• The analysis filters should be chosen to maximize the coding gain.

• The high-pass filter should have a good stopband attenuation to minimize leakage of quan-
tization noise into low frequencies.

After the 2D DWT analysis, bit allocation and quantization is performed on the coefficients. The
coefficients are grouped by scanning and then entropy coded for the compression. Entropy coding is
a special form of lossless data compression. The process of entropy coding can be split in two parts:
modeling and coding. Modeling assigns probabilities to the coefficients, and coding produces a bit
sequence from these probabilities. A coefficient with probability p gets a bit sequence of length
− log(p). The bit sequences require less space than the original coefficients. Entropy coding maps
data bit patterns into code words, replacing frequently-occurring bit patterns with short code
words.

In [21] a multiwavelet transform based on two scaling functions and two wavelet functions
is used for image compression. By using two scaling functions and two wavelets functions, the
properties regularity, orthogonality and symmetry are ensured simultaneously. For the DWT, this
corresponds to using two low-pass filters and two high-pass filters at each level of the filter bank.

An image, decomposed in wavelet coefficients, can also be compressed by ignoring all coefficients
below some threshold value [13]. The threshold value is determined based on a quality number
calculated using the signal to noise ratio. The tradeoff between compression level and image quality
depends on the choice of wavelet function, the filter order, filter length and the decomposition level.
The optimal choice depends on the original image quality and computational complexity.

In video compression, a new dimension is added, namely time. This expands the wavelet
analysis from 2D to 3D. The compression can be performed analogue to the image compression
described in [26]. Another video compression method is by motion estimation. This approach is
based on compression of the separate images in combination with a motion vector. In the synthesis
bank the separate images are reconstructed and the motion vector is used to form the subsequent
frames [26].

5.2.3 JPEG 2000

The continual expansion of multimedia and internet applications leads to the need of a new image
compression standard which meets the needs and requirements of the new technologies. The new
proposed standard by the JPEG (Joint Photographic Experts Group) committee is called the
JPEG 2000 standard [31, 25].
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The old JPEG standard used the discrete cosine transform (DCT) for the compression of
images. The new JPEG 2000 standard is based on the wavelet transform. The new standard
provides a low bit-rate operation on still images with a performance superior compared to existing
standards [31, 25].

The compression engine of the JPEG 2000 standard can be split into three parts, the prepro-
cessing, the core processing and the bit-stream formation part.

The preprocessing part tiles the image into rectangular blocks, which are compressed inde-
pendently. The tiling reduces memory requirements and allows decoding of specific parts of the
image. All samples of the separate tiles are DC level shifted and component transformations are
included to improve compression and allow for visually relevant quantization.

The core processing includes the discrete wavelet transform to decompose the tile components
into different levels. The wavelet coefficients of the decomposition levels describe the horizontal
and vertical spatial frequency characteristics of the tile components. The wavelet transform uses a
one-dimensional subband decomposition. The low-pass samples represent a low-resolution version
of the original set, the high-pass samples represent a down-sampled residual version. Images are
transformed by performing the DWT in vertical and horizontal directions. After the DWT, all
coefficients are quantized. The JPEG 2000 standard supports separate quantization step-sizes for
each subband. Finally the core processing part performs entropy coding.

Wavelet coding

The one dimensional (1D) wavelet transform can be extended to a two dimensional wavelet trans-
form using separable wavelet filters. The orthogonal wavelet transform is not ideal for a coding
system, the number of wavelet coefficients exceeds the number of input coefficients. The aim of
coding systems is to reduce the amount of information, not to increase it. In order to eliminate
border effects, the wavelets should have linear phase, this is not possible with orthogonal filters,
except for the trivial Haar filters (see Appendix A).

The biorthogonal wavelet transform can use linear phase filters and permits the use of symme-
tric filters. The symmetric wavelet transform (SWT) solves the problems of coefficient expansion
and border discontinuities and improves the performance of image coding. The disadvantage of
biorthogonal filters is that they are not energy preserving. This is however not a big problem since
there are linear phase filter coefficients which are close to being orthogonal [31].

Features

The JPEG 2000 standard shows several features. There is the possibility to define a region of
interest (ROI) in an image. The coefficients of the bits in the ROI are scaled to higher bit planes
than the bits in the background. Therefore, the general scaling-based method is used [25].

Another nice feature of the new standard is scalable coding. With this coding, more than one
quality and resolution can be obtained simultaneously.

To improve the performance of transmitting compressed images over error prone channels,
error resilience is included. Error resilience is one of the most desirable properties in mobile and
internet applications.

The perceived quality of compressed images is determined to a large extent by the human
visual system. JPEG 2000 includes visual frequency weighting. The image is viewed from various
distances, depending on the bit rate.

The Intellectual Property Rights (IPR) make it possible to extract information about the
compressed image, i.e. information required to display the image, without actually decoding the
image.

5.2.4 Texture Classification

Another application of the DWT is to perform texture classification [32]. For interpretation and
analysis, e.g. of images, the human visual system relies for a great extend on texture percep-
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tion. Many texture classification algorithms make use of the Gabor transform, which is another
time-frequency analysis technique. In [32], a feature extraction algorithm based on the wavelet
transform is proposed. The wavelet frame analysis performs upsampling on the filters rather than
downsampling the image. The advantage of the wavelet transform over the Gabor transform is that
the wavelet transform is computationally less demanding and covers the complete time frequency
plane.

The zero crossings of the wavelet transform correspond to edges in the image. The proposed
algorithm of [32] includes information from varying length scales and makes it able to distinguish
micro- and macrotextures. The zero crossing information can be derived from the wavelet detail
subbands. Each level of the DWT has three subbands, for respectively the horizontal, vertical
and diagonal directions. From the transform a feature vector is extracted which represents the
texture. Using the number of zero crossings of the various subbands, an average number of zero
crossings per pixel is determined. It is assumed that the texture image is homogenous. Since only
the texture classification is required, this assumption poses no problem [32].

For the texture classification, symmetric wavelet filters are used because of the linear phase
which minimizes distortion effects. Fewer decomposition levels, leading to larger vector lengths,
improve the classification.

5.2.5 Denoising

The denoising and feature detection of signals using the wavelet transform is done by representing
the signal by a small number of coefficients [26]. This wavelet shrinkage is based on thresholding, as
developed by Donoho and Johnstone [9]. The signal is composed into L levels before thresholding
is applied.

(a) hard (b) soft

Figure 5.1: thresholding

There are two types of thresholding, hard and soft thresholding with threshold δ (see Fig. 5.1).
Hard thresholding zeros out small coefficients, resulting in an efficient representation. Soft thresh-
olding softens the coefficients exceeding the threshold by lowering them by the threshold value.
When thresholding is applied, no perfect reconstruction of the original signal is possible. Soft
thresholding gives better compression performance [26].
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The outputs of soft and hard thresholding can be written as

yhard =
{
x(t), |x(t)| > δ
0, |x(t)| ≤ δ

(5.5)

ysoft =
{
sign (x(t)) (|x(t)| − δ) , |x(t)| > δ
0, |x(t)| ≤ δ.

(5.6)

Only the large coefficients are used for the reconstruction of the image. The denoising is not
limited to a special kind of noise, different kinds of disturbances can be filtered out of the images.

Thresholding generally gives a low-pass version of the original signal. An appropriate threshold
δ can suppress noise present in a signal. For denoising applications, generally soft thresholding is
used. It is assumed that the noise power is smaller than the signal power. If this is not the case,
the denoising by thresholding removes either besides the noise a large part of the signal or leaves
a larger part of the noise in the signal. Some of the signal’s power is removed with the noise, it is
generally not possible to filter out all the noise without affecting the original signal.

5.2.6 Fingerprints

The FBI has millions of fingerprints which they have to digitize to improve search capabilities.
The FBI uses a wavelet/scalar quantization (WSQ) algorithm for the compression of the gray scale
fingerprint images [26, 2]. The compression algorithm consists of three main steps: a DWT, scalar
quantization and entropy coding. For the DWT a two channel perfect reconstruction linear phase
filter bank is used since it is symmetric and since it prevents image content to shift between the
various subbands. The quantization of the DWT coefficients is done according to uniform scalar
quantization characteristics. Finally the quantized indices are entropy-encoded using Huffman
coding. Huffman coding is an entropy encoding algorithm used for data compression that finds
the optimal system of encoding bits based on the relative frequency of each coefficients. For the
reconstruction, first the entropy coding is reversed, then the quantization is done and finally an
inverse DWT is performed [26, 2]. The wavelet analysis is preferred over the JPEG standard,
since the JPEG standard merges ridges in the true image during compression. Each fingerprint
card uses 10 MB of data, this is compressed around 20:1.

In [30] an image-based method for fingerprint recognition is proposed. Note that this method
is not known to be used by the FBI. The proposed method matches fingerprints based on features
extracted by a wavelet transform. For this a j-level 2D dyadic grid wavelet decomposition of a
discrete image is performed, representing the image in 3j + 1 subimages; one approximation and
3j detail subimages. The wavelet detail coefficients correspond to edges and high frequencies. The
dominant frequencies of fingerprint images are located in the middle frequency channels [30]. The
wavelet transform detects the ridges in the fingerprint and the distance between the ridges very
well. The wavelet coefficients are used to calculate a normalized l2-norm feature vector F of each
subimage dkj which approximates the energy distribution of the image on different scales (2j) and
orientations (k) as

F =
[{
e1j e2j e3j

}
j=1,...,J

]
(5.7)

ekj =
‖dkj ‖2∑J

i=1

∑3
l=1 ‖dli‖2

. (5.8)

A measure for the similarity between different feature vectors is obtained using the intersection
operator [30]. The best results are obtained using Daubechies and Symlet orthonormal wavelet
filters (see Appendix A).

5.3 Control applications

Wavelet analysis can be used for the modeling and control of the dynamical behavior of systems and
the partitioning and decoupling of system responses [1]. The Morlet wavelet is very useful for the
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detection of system nonlinearities because of its good support in both frequency and time domain.
The separation of modes that are close in frequency can also be done using Morlet wavelets.
Furthermore, natural frequencies and damping ratios of multi-degree-of-freedom (MDOF) systems
can be identified. Research has also been done on the determination of modal parameters through
a wavelet estimation technique and on the analysis of impulse responses.

This section deals with several control applications where wavelets are used, these include
among others motion detection and tracking, nonlinear adaptive control, encoder-quantization
denoising, repetitive control, time-frequency adaptive ILC and system identification.

5.3.1 Motion detection and tracking

Motion detection of objects can be done using an algorithm based on the wavelet transform
[27]. The algorithm is part of a vehicle tracking system and uses the Gabor and Mallat wavelet
transforms to improve the accuracy and the speed of the vehicle detection. The Gabor wavelet
analysis estimates image flow vectors, object detection is then done using the Mallat wavelet
transform.

The first stage of the algorithm is the computation of an image flow field based on a convolution
with a Gabor wavelet transform, which for an image I(x) is defined as

Jj(x) =
∫
I(x′)ψj(x− x′)d2x′. (5.9)

The Gabor wavelets can be written in the shape of plane waves with wave vector kj , restricted by
a Gaussian envelope function, as

ψj(x) =
k2
j

σ2
e

(
−

k2
j x2

2σ2

)
e(ikjx). (5.10)

The width of the Gaussian envelope can be controlled by the parameter σ. The second stage
of the algorithm performs motion hypothesis from the image flow field by extracting local maxima
in the image flow histogram (a histogram over the flow field vectors). A low-pass filter avoids the
detection of too many irrelevant maxima.

The third stage of the algorithm uses the Mallat wavelet transform (a two channel DWT
subband coder) to find the matching edges between two frames using the image flow field. The
resulting accordance maps are integrated over a sequence of frames in order to improve the quality.
Finally, the last stage of the algorithm performs the segmentation.

The algorithm generates motion hypotheses on a coarse level, but segments them on a single
pixel level, allowing to segment small, disconnected or openworked objects. Another advantage of
the algorithm is that the motion of the objects does not need to be continuous. A drawback is
that when vehicles move close to each other with similar speed they are identified as one object.
However, the segmentation still shows multiple vehicles.

5.3.2 Robot positioning

The grasping skill of a robot manipulator can be done using a camera, the images are analyzed
using Gabor wavelets [34]. Gabor wavelets are useful for object recognition. For the grasping task
the inverse procedure is performed, the object is known, the robot position is to be determined.
For the pre-grasp face it is assumed that the object of interest is within the range of the camera,
the type and vertical position of the object are known.

The images of the camera are analyzed using a 2D Gabor bell function

ψ(x, y) = e

(
− x2+α2y2

2σ2

) [
e(−2πi x

λ ) − e

(
−σ2

2α

)]
. (5.11)

The period length is defined by λ, σ and σ/α are respectively the longitudinal and transversal
width. The last term of the function removes the DC component, making the filter invariant to
shifts in gray-level.
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The camera looks downward vertically to avoid distortion of the image shape, this at the cost
of a robot transfer delay and extra kinematic restrictions on the workspace. The positioning of the
robot is divided into a coarse, fast translational part and a rotational and translational part. The
image of the camera is preprocessed and the object’s center of gravity is mapped. The rotational
positioning is obtained using a region of interest (ROI).

The positioning of the manipulator robot using Gabor filters is stable up to extremely poor
illumination conditions and performs well even for partly covered objects or textured backgrounds
[34]. The proposed method is calibration free, direct, fast and robust.

5.3.3 Nonlinear adaptive wavelet control

Using constructive wavelet networks, a nonlinear Adaptive Wavelet Controller (AWC) can be
constructed [36]. The orthonormality and multi-resolution properties of wavelet networks make it
possible to adjust the structure of the nonlinear adaptive wavelet controller on-line.

The adaptive wavelet controller is first constructed by a simple structure. If the tracking error
does not converge in the specified adaptation period using the current wavelet structure, a new
wavelet resolution is considered to be necessary and added. This allows the construction and tuning
of the wavelet controller from a coarse level to a finer level while retaining the closed-loop stability
[36]. Through adaptation, the desired control performance can be achieved asymptotically.

A class of SISO nonlinear dynamic systems with state vector x ∈ Rn and control input u ∈ R
equals  ẋi = xi+1, i = 1, 2, . . . , n− 1

ẋn = f(x, u)
y = x1.

(5.12)

The control objective is to find an appropriate control input u(t) for the nonlinear system such
that it tracks the desired trajectory. The structure of wavelet networks cannot be infinitely large
for control purposes. The adaptive controller can be written as

u(z) = ŵTJ φ(z) +
Jp∑
j=J

sign( eq,(j−J)

ε0
) + 1

2
v̂Tj ψ(z). (5.13)

The father wavelet (scaling function) is denoted by φ and the mother wavelet (wavelet function)
by ψ, eq,j is the performance evaluation. The tuning parameters are w and v.

When a new resolution is added, the tracking error will keep decreasing till the desired control
performance is reached. The stability of each resolution can be guaranteed using Lyapunov’s direct
method [36].

5.3.4 Encoder-quantization denoising

Quantization noise can in some cases be filtered out using a low-pass filter, however for slow
changing signals this approach fails. Since the DWT can filter out noise at all frequencies it is a
good alternative for denoising encoder signals [23].

The noise is filtered out by determining thresholds for the various subbands, since the amplitude
of quantization errors is always the same, the same threshold can be used for all subbands. For
denoising purposes the choice of waveform is critical [23]. However the DWT is not able to cancel
quantization errors for very low signal speeds, for this only dithering or the use of raw encoder
signals helps. The denoising of an encoder signal can be summarized as

• Determine the lowest signal speed and determine the lowest frequency in the quantization
error as function of the speed ẋ and the encoder resolution ∆

fq =
ẋ

∆
(5.14)
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• Adjust the threshold levels of the various subbands to δ = ∆.

• Use the ‘bior5.5’-wavelet function for the signal decomposition and apply soft-thresholding
before reconstructing the signal [23].

5.3.5 Real-time feature detection

Feature detection is based on distinguishing signal parts with different frequency content. The
wavelet transform enables the possibility to distinguish between various frequencies in time. Most
feature detection algorithms are processed off-line or in a delayed loop. In [23], an on-line approach
is followed using a real-time implementation of the DWT.

The real-time detection must be fast and the number of false warnings should be minimal. The
controller adaptation must be done as fast as possible to minimize the decrease in performance.
There exists a trade-off between detection speed and accuracy. The detection is successful if the
coefficients of the wavelet transform arise a threshold value. The detection speed of the wavelet
filter is faster than a simple threshold-based detection.

A proposed application of the real-time feature detection is the adaptation of the controller of
a CD-player [23]. The controller can be adapted based on detected disc defects. The Haar wavelet
(see Appendix A) has the shortest delay time, but is not able to separate the different disturbances
on the CD-player (shocks and disc defects). Even though good results were obtained using the
Daubechies wavelet family (Appendix A), for shock detection a new, optimized, waveform with
zero mean and normalized energy is derived [23]. Since the optimal waveform is dependent on the
actual shock, an adaptive analyzing filter would increase the detection speed. Disc-scratches are
best isolated in the first decomposition level, whereas shocks are best detected in higher levels.

5.3.6 Repetitive control

In [3], The DWT is used to reduce the memory size of a repetitive controller. Repetitive controllers
usually contain a memory for the error signal and a low-pass filter to ensure stability. The size of
the memory is determined by the sampling time.

The DWT decomposes the error signal into high-pass (detail) and low-pass (approximation)
coefficients. If only the levels containing the low-frequent approximation coefficients are used and
memorized, the error signal is compressed. The synthesized signal of the inverse discrete wavelet
transform (IDWT) is used as input signal for the low-pass filter. The wavelet shape, scale and the
decomposition tree level determine the system performance and required memory size.

The DWT can be seen as an extra filter added to the repetitive controller and uses little CPU
time during analysis and synthesis of the error signal.

5.3.7 Time-varying filters

Many signals have time-varying properties, hence time-varying filters are required. The multires-
olution properties of the wavelet transform make it suitable for the design of such filters. Using
the wavelet coefficients and the desired transfer function, a time-varying filter can be designed.

The designed wavelet-based filters are called scale filters [20]. The action of a time-varying
scale filter v(t, s) on the wavelet coefficients C(t, s) produces an output filtered respons TF (t) as

TF (t) =
∑
s

v(t, s)C(t, s). (5.15)

The coefficients of the scale filter v(t, s) are calculated by a linear least squares method. The
vector with scale filter coefficients v can be calculated as a function of the desired Fourier filter F
and the matrix with wavelets Ψ, the matrix with columns containing the wavelet ψ̂∗ at scales sj .
The ∗ denotes the complex conjugate, theˆdenotes the Fourier transform. The vector v can be
calculated as

v =
(
ΨtΨ

)−1
ΨtF̂. (5.16)
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This equation minimizes the misfit between the predicted filter Ψv and the true desired filter F̂.
The minimization is done by the L2 norm on the difference between the predicted filter Ψv and
the true filter response F̂.

5.3.8 Time-frequency adaptive ILC

In standard iterative learning control (ILC), position dependent dynamics, setpoint trajectory
changes and stochastic effects are not taken into account. A time-frequency representation of the
tracking error can be used to filter out the non-repeating disturbances and improve the performance
of ILC. In [11], a Wigner analysis is used to obtain the time-frequency representation of the error.
The Wigner distribution is a quadratic time-frequency distribution. The distribution is real-valued
and can be physically interpreted as the signal’s energy over both time and frequency. In [37] the
wavelet transform is used for this purpose.

Using the time-frequency analysis of the error signal, a time-varying Q filter can be designed.
The designed Q filter adapts the momentary frequency content of the feedforward signal by chang-
ing the bandwidth over time and position [11, 37].

5.3.9 Identification

Wavelets are applied for several identification methods, this section describes the application of
wavelets for friction and system model identification.

Friction

Friction deteriorates the performance of controlled systems at low velocities, especially with zero
crossings. Friction has a localized and low dimensional characteristic. Knowledge of the friction
characteristics can be used in feedforward control to improve the precision of the controlled system.
The space-frequency localization of wavelet techniques makes it useful for the identification of
friction models [10]. The friction is modeled as a nonlinear function of the velocity

Tftotal (v(t), v̇(t)) = Tfc [sign (v(t))]︸ ︷︷ ︸
Coulomb friction

+Tfn (v(t), sign (v̇(t)))︸ ︷︷ ︸
nonlinear friction

+ bv(t)︸ ︷︷ ︸
linear viscous friction

. (5.17)

It is assumed that the nonlinear friction term vanishes beyond some critical relative velocity vc
and can be expressed in discrete notation as Tfn (v(t), v(t− τ)) [10]. The friction function around
zero velocity (most complex characteristic) is approximated by a wavelet basis function network
using a Mexican hat wavelet function.

The nonlinear friction term is mapped using a variable vector x with finite integer index J of
the approximation coefficients and wavelet basis function φ as

x =
[

v(t)
v(t− τ)

]
(5.18)

Tfn (v(t), v(t− τ)) ≈
∑
j∈J

cjφj

([
v(t)

v(t− τ)

])
. (5.19)

Since the friction is discontinuous at zero velocity, two wavelet basis function networks are used
for the identification, one for positive and one for negative velocities. The wavelet network weights
are only updated if the velocity is below the critical velocity. The wavelet basis function network
captures friction and other system uncertainties. The learning convergence is guaranteed due to
the linear parametrization feature [10]. The identification can be done using minimal knowledge
of the system dynamics. A drawback of the proposed method is the number of nodes needed in
the network.
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System identification

In control applications such as ILC, an a priori model of a system often does not lead to the desired
accuracy. An online, real-time identification method can improve the accuracy and efficiency of
feedforward control algorithms [35]. For the system identification, a nonparametric technique
based on the wavelet transform is used. The decomposition is done using a Haar wavelet ψ(t) and
corresponding scaling function φ(t)

ψ(t) =

 1, 0 < t < 0.5
−1, 0.5 < t < 1
0, otherwise

(5.20)

φ(t) =
{

1, 0 ≤ t ≤ 1
0, otherwise. (5.21)

The functional form of the system input-output relation is given by the impulse response. The
Haar functions provide an orthogonal basis. Using a Haar wavelet system, the impulse response
is approximated. The approximation of the transfer function H equals

H(z) ≈
N∑
k=0

c00(k)z−kZ (φ(t)) . (5.22)

Z (φ(t)) is the Z-transform of φ(t) and c00 can be calculated by the inner products of the scaling
function and the signal g(t) as

c00(k) = 〈g(t), φj,k(t)〉 . (5.23)

Using the DWT, the transfer function matrix, which is given by the impulse response, is approxi-
mated.

In [28], a system identification method using wavelet transform, based on minimizing a cost
function, is proposed. An advantage of using orthogonal wavelet functions is that a better accuracy
can be achieved by adding new terms without affecting the coefficients of the old estimate. A
function can be decomposed into a scaling function φ at a resolution j0 and wavelets ψ at higher
resolution.

For orthogonal wavelets with constant sample distributions it can be shown that the mini-
mization results in the desired Fourier coefficients [28]. A function f(ω) can be approximated
by

f(ω) ≈
j0∑
j=j1

Uj∑
k=Lj

〈f, ψj,k〉ψj,k
Uj1−1∑

k=Lj1−1

〈f, φj1,k〉φj1,k. (5.24)

The uniform approximation of f can be improved by increasing j0. The estimated function con-
verges since the coefficients of the higher resolution basis functions are smaller than the coefficients
of the corresponding lower resolution basis functions. The proposed approach can also be used for
an on-line estimation [28].

5.3.10 Nonlinear predictive control

The performance of linear control schemes applied to nonlinear systems is often not satisfactory.
Feedforward neural networks can approximate any nonlinear function by mapping an input space
to an output space [14]. The training of the neural network is done by a least-squares learning
algorithm based on orthogonal wavelet functions. On-line model identification is possible by
training the wavelet neural network by a least squares method using Shannon wavelet functions.
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The wavelet functions induce an orthonormal decomposition of L2(R) using the following equations

φ(x/2) =
√

2
∑
k

hkφ(x− k) (5.25)

ψ(x/2) =
√

2
∑
k

gkψ(x− k). (5.26)

The mother wavelet function is represented by ψ, φ is the scaling function (father wavelet), hk
and gk are respectively low-pass and high-pass filters. The decomposition of a function f(x) can
be done in two ways

f(x) =
∑
m,n

〈f, ψm,n〉ψm,n(x) (5.27)

f(x) =
∑
n

〈f, φm0,n〉φm0,n(x) +
∑

m≤m0,n

〈f, ψm,n〉ψm,n(x), (5.28)

where m0 is an integer representing the lowest scale in the decomposition. Eq. (5.27) is more
adaptive to dynamic process modeling than (5.28) [14]. Since most dynamic processes have a
low-pass character, the scaling function term only is able to approximate the dynamic system.
This avoids an explosive increase in neuron number in the neural network.

The approximated identification of a nonlinear system can be used in predictive control. Predic-
tive control has three main advantages; real-time prediction, optimization and feedback correction.
The process model is used to predict the future process behavior and to calculate the control ac-
tion in order to optimize the controller specifications. The position error is used to correct the
model error in order to provide robustness. The control action of the nonlinear model predictive
controller is calculated by solving an on-line optimization problem.

5.4 Audio applications

The restoration and enhancement of audio signals requires powerful analysis methods. For the de-
noising of audio signals often a low-pass filtering is not enough. The time-frequency multiresolution
properties of wavelet analysis make it useful for the use in audio applications. Some applications
of wavelet analysis in audio applications, found in literature, will be addressed in this section.

5.4.1 Audio structure decomposition

An audio signal can be considered to be composed of three parts, a harmonic, a transient and a
stochastic part (noise) [7]

s(t) = stonal(t) + stransients(t) + snoise(t). (5.29)

The three parts can be separated by a separation algorithm since they are not orthogonal to each
other. The noise is assumed to be a Gaussian random colored noise. For the analysis, the noise
spectral properties are estimated.

Noise model

A model of the noise can be obtained by estimating the parameters of the stochastic random
process. For Gaussian noise, the process is entirely determined by its power spectrum [7]. Random
noises are averaged over critical bands. The summation of the variances σk of these critical bands
gives

snoise(t) =
29∑
k=1

σkWk(t). (5.30)

Wk is a Gaussian random generator which contains frequencies in the subband of interest. The
variances are assumed constant over a subband.
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Denoising algorithm

The denoising algorithm proposed in [7] is based on a wavelet packets decomposition which fre-
quency resolution closely matches the critical subbands. Within the various subbands hard thresh-
olding is performed according to

Ttk(x) =
{

0 if |x| < tk
x if |x| ≥ tk.

(5.31)

The threshold tk is chosen adaptively.

Separation

The three different parts of the signal can be estimated successively [7]. Before estimating the
tonal part a preliminary noise filtering is performed in order to reduce biases. The tonal part is
estimated using a lapped cosine transform. The overlap reduces the influence of discontinuities.
The harmonic components are selected by thresholding.

After estimation of the tonal part another noise filtering is performed. The transient part is
separated using a standard dyadic DWT. For the separation, again thresholding relative to the
maximum coefficient is applied.

Finally, the noise is estimated by a critical bandbased wavelet packets analysis. In an wavelet
packets analysis not only the approximations, but also the details are split to lower levels. The
variances of the noises in the various subbands are estimated from the sample variances of the
wavelet coefficients.

5.4.2 Speech recognition

Wavelets have become a popular tool for speech processing, such as speech analysis, pitch detection
and speech recognition [12]. Wavelets are successful front end processors for speech recognition,
this by exploiting the time resolution of the wavelet transform.

One difficulty of the use of the wavelet transform for speech recognition is the increase in the
amount of data presented to the recognition system. The number of coefficients generated by the
DWT is much larger compared to the Short Time Fourier Transform.

For a fixed number of wavelets, the recognition performance is the largest when the frequency
domain is sufficiently covered. The performance decreases with decreasing wavelet time coverage.

When the scale s of the wavelet transform is restricted to si with s = 2, the Discrete Wavelet
Transform (DWT) computes data on a dyadic grid, where each successive lower octave has half
the number of data points. All wavelets will be an octave space apart. The spacing within each
octave will need to be preserved so that the given number of voices appears within each octave.

For the speech recognition, the mother wavelet is based on the Hanning window [12]. The
recognition performance depends on the coverage of the frequency domain. The goal for a good
speech recognition is to increase the bandwidth of a wavelet without significantly affecting the
time resolution. This can be done by compounding wavelets [12].

Compounding wavelets

The compounding of two wavelets ψ can be described by

ψs,τ,i(t) = α
1√
a

2i
n

ψ

(
t− τ

a
2i
n

)
+ β

1√
a

2i+1
n

ψ

(
t− τ

a
2i+1

n

)
. (5.32)

The number of voices per octave is denoted by n. If a = 2, the DWT computes data points
on a dyadic grid, the value of a determines the required number of wavelets to cover a certain
frequency range. The compound wavelet is the sum of two adjacent wavelets. The bandwidth is
the compound of the two wavelets. The time resolution of the compound wavelet is the greater of
the two wavelets. The compound wavelet obeys the admissibility condition (see Section 3.2).
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When more than two wavelets are compounded, edge effects must be considered. Furthermore,
compound wavelets are computationally efficient.

The compounding of wavelets improves the frequency coverage of the wavelet analysis, but
does not adversely affect the time domain resolution. By the improvement of the frequency
domain coverage the parametrization becomes a true representation of the speech and as such, the
recognition performance improves.

A drawback of compounding wavelets is that the phase of the compound wavelet equals the
phases of the contributing wavelets. This makes the technique not very suitable for an application
that requires accurate phase information. However, speech recognition relies mainly on temporal
information and the magnitude is used for the recognition.

5.4.3 Speech enhancement

Speech enhancement can be applied for example in a noisy car environment [33]. For this the
speech of the driver should be separated from the surroundings, such as speech of the passenger,
car engine noise, music, etc.

The separation of the driver’s speech is done in [33] using Blind Source Separation (BSS) which
uses the time-correlation of speech signals recorded by two microphones. The BSS algorithm can
be implemented for real time use and gives good separation results. However, the BSS algorithm
is not able to separate the noise signals from the speech signal because the noise is spread out in
time in the signals of both microphones.

For the denoising of the signal it is assumed that the noise can be approximated by a Gaussian
distribution [33]. The speech components will have large values compared to the noise. The
computation of the coefficients is done using a multiresolution wavelet filter bank. The filter
choice depends on the noise level, car speed and other parameters. The optimal choice of filters is
determined by a lookup table consisting of filters computed off-line for various settings. The noise
level is estimated by analyzing a signal during speaker silence.

5.4.4 Audio denoising

Dolby noise reduction is based on reducing the perception of tape hiss [24]. The level of soft,
high-frequency passages is raised to make them louder than the tape’s noise, whereas the loud
passages are not changed.

The multiresolution properties of wavelet analysis reflect the frequency resolution of the human
ear. The WT is adapted to analyze local variations in signals. Noise is distinguished to its
properties in the time and frequency domain. White noise is present in all frequencies. Gaussian
noise, generated by almost all natural phenomena, is normally distributed. Uniform noise has a
constant probability density in the time domain [24].

White noise is the most difficult to detect and to remove. The harmonic signal content is
closely correlated, resulting in larger coefficients than the uncorrelated noise. The noise can thus
be removed by discarding small coefficients.

White noise can be handled either by hard or soft thresholding. Hard thresholding sets all
the wavelet coefficients below a given threshold value equal to zero and exhibits artifacts. Soft
thresholding smoothens the signal by reducing the wavelet coefficients by a quantity equal to the
threshold value, note that soft thresholding modifies the signal energy.

A method to optimize the parameters used in signal denoising in the wavelet domain is pre-
sented in [18]. The method uses a cross-validation (CV) to select the optimal wavelet decomposi-
tion level and wavelet function for the DWT. The denoising of a signal is done in three steps

1. decomposition of the signal by the DWT,

2. thresholding of the wavelet coefficients,

3. reconstruction of the signal.
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For a good denoising result, a good threshold level has to be estimated. The wavelet function
and the decomposition level also play an important role in the quality of the denoised signal.
The optimal threshold value is estimated using a soft thresholding approach, the goal of CV is to
minimize the error between the denoised signal and the ideal signal. The CV procedure of a signal
with length N = 2p consists of the following steps [18]

1. two functions, one for odd points (fo) and one for even points (fe) are derived by dividing
the original signal and re-indexing the data points,

2. The even function is estimated by interpolation of the odd function

f∗e (i) =
(fo(i) + fo(i+ 1))

2
, i = 1, . . . , 2p−1, (5.33)

3. the DWT is applied to the estimated signal,

4. thresholding is applied to the transformed signal,

5. the filtered signal is reconstructed (f̄e) using an IDWT,

6. the integrated square error (ISE) is calculated as the summed difference between the recon-
structed function and the estimate

ISEe =
N/2∑
j=1

(
f∗e (j)− f̄e(j)

)2
. (5.34)

The described procedure is repeated for the odd function. The total ISE is the sum of the even
and odd ISE

ISE = ISEe + ISEo. (5.35)

The threshold value is estimated on the basis of N/2 data points, the threshold value th for the
whole function is defined as

th(N) =
(

1 +
log(2)
log(N)

)1/2

th(N/2). (5.36)
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Chapter 6

Conclusions

Signals represented in the time domain can be evaluated for their properties in the frequency
domain by applying signal analysis. The most commonly known method to analyze a time signal
for its frequency content is the Fourier transform. The wavelet transform is a relatively new
technique which has some attractive characteristics.

This report discusses the main issues regarding the wavelet transform and provides a general
introduction of the wavelet theory. The various wavelet analysis methods are described in com-
parison to the widely known Fourier transform. The Fourier transform only retrieves the global
frequency content of a signal, all time information is lost. To overcome this problem the short
time Fourier transform is developed, however this method suffers from a limitation due to a fixed
resolution in both time and frequency. A multiresolution analysis of the local frequency content
of a signal is made possible by wavelet analysis.

Two different kinds of wavelet transform can be distinguished, a continuous and a discrete
wavelet transform. The continuous wavelet transform is calculated by the convolution of the
signal and a wavelet function. A wavelet function is a small oscillatory wave which contains both
the analysis and the window function. The discrete wavelet transform uses filter banks for the
analysis and synthesis of a signal. The filter banks contain wavelet filters and extract the frequency
content of the signal in various subbands.

Wavelet analysis has a wide range of applications. In this report the applications which are
of most interest for mechanical engineers have been mentioned. Wavelet analysis can be applied
for numerical analysis, i.e. solving ordinary and partial differential equations. Furthermore the
wavelet transform is used in signal analysis, e.g. for compression, denoising and feature extraction.
For control applications wavelets are used in motion tracking, robot positioning, identification and
both linear and nonlinear control purposes. Finally, wavelets are a powerful tool for the analysis
and adjustment of audio signals.
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Appendix A

Wavelet functions

For the DWT special families of wavelet functions are developed. These wavelets are compactly
supported, orthogonal or biorthogonal and are characterized by low-pass and high-pass analysis
and synthesis filters. From the filters a wavelet function ψ(t) and scaling function φ(t) can be
derived as discussed in Section 4.2 [6, 17, 23]. Some generally used families for the DWT are
discussed in this appendix by their wavelet and scaling functions .

A.1 Daubechies

The Daubechies familie is named after Ingrid Daubechies who invented the compactly supported
orthonormal wavelet, making wavelet analysis in discrete time possible. The first order Daubechies
wavelet is also known as the Haar wavelet, which wavelet function resembles a step function.

The wavelet and scaling functions for the Daubechies functions with order 1 up to 8 are shown
in respectively Fig. A.1 up to Fig. A.8. The Haar wavelet or db1 can be written as:

ψ(t) =

 1 if x ∈ [0 0.5]
−1 if x ∈ [0.5 1]
0 if x /∈ [0 1]

(A.1)

φ(t) =
{

1 if x ∈ [0 1]
0 if x /∈ [0 1]. (A.2)

Higher order Daubechies functions are not easy to describe with an analytical expression. The
order of the Daubechies functions denotes the number of vanishing moments, or the number of
zero moments of the wavelet function. This is weakly related to the number of oscillations of
the wavelet function. The larger the number of vanishing moments, the better the frequency
localization of the decomposition. The dependence between wavelet coefficients on different scales
decays with increasing wavelet order [4]. The order of the wavelet functions can be compared to
the order of a linear filter. The Daubechies wavelets are compactly supported orthogonal wavelets.
The scaling filters are minimum-phase filters.
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Figure A.1: db1
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Figure A.2: db2
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Figure A.3: db3
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Figure A.5: db5
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Figure A.6: db6
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Figure A.8: db8

A.2 Coiflets

Coiflets are also build by I. Daubechies on the request of R. Coifman. Coifman wavelets are or-
thogonal compactly supported wavelets with the highest number of vanishing moments for both
the wavelet and scaling function for a given support width. The Coiflet wavelets are more sym-
metric and have more vanishing moments than the Daubechies wavelets. The Coiflet wavelet and
scaling functions with orders 1 up to 5 are shown in respectively Fig. A.9 up to Fig. A.13.

0 1 2 3 4
-2

-1

0

1

2

0 1 2 3 4
-2

-1

0

1

2

φ(t)ψ(t)

Figure A.9: coif1
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A.3. SYMLETS 39

0 5 10 15
-2

-1

0

1

2

0 5 10 15
-2

-1

0

1

2

φ(t)ψ(t)

Figure A.11: coif3
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Figure A.12: coif4
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Figure A.13: coif5

A.3 Symlets

Symlets are also orthogonal and compactly supported wavelets, which are proposed by I. Daubechies
as modifications to the db family. Symlets are near symmetric and have the least asymmetry. The
associated scaling filters are near linear-phase filters. The properties of symlets are nearly the
same as those of the db wavelets. The symlet wavelet and scaling functions for orders 2 up to 8
are shown in respectively Fig. A.14 up to Fig. A.20.
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Figure A.14: sym2

0 1 2 3 4
-2

-1

0

1

2

0 1 2 3 4
-2

-1

0

1

2

φ(t)ψ(t)

Figure A.15: sym3
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Figure A.16: sym4
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Figure A.18: sym6
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Figure A.19: sym7

0 5 10
-2

-1

0

1

2

0 5 10
-2

-1

0

1

2

φ(t)ψ(t)

Figure A.20: sym8

A.4 Biorthogonal

The biorthogonal family contains biorthogonal compactly supported spline wavelets. With these
wavelets symmetry and exact reconstruction is possible using FIR (Finite Impulse Response)
filters, which is impossible for the orthogonal filters (except for the Haar filters). The symmetry
means that the filters have linear phase.

The biorthogonal family uses separate wavelet and scaling functions for the analysis and syn-
thesis of a signal. The reverse biorthogonal family uses the synthesis functions for the analysis and
vice versa. For the analysis a wavelet function ψ̃ is used, the corresponding wavelet coefficients
can be calculated as [17]

c̃j,k =
∫
x(t)ψ̃j,k(t)dt. (A.3)

The synthesis uses a wavelet ψ as

x(t) =
∑
j,k

c̃j,kψj,k. (A.4)

Fig. A.21 up to Fig. A.24 show some examples of biorthogonal analysis and synthesis functions.
The double numbers in the names denote the orders of respectively the analysis and synthesis
filters.
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Figure A.21: bior1.1
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Figure A.22: bior1.3
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Figure A.23: bior2.2

0 2 4 6 8
-2

-1

0

1

2

0 2 4 6 8
-2

-1

0

1

2

φ(t)ψ(t)

(a) analysis

0 2 4 6 8
-2

-1

0

1

2

0 2 4 6 8
-2

-1

0

1

2

φ(t)ψ(t)

(b) synthesis

Figure A.24: bior2.4
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